首页> 外文OA文献 >On Solving a Generalized Chinese Remainder Theorem in the Presence of Remainder Errors
【2h】

On Solving a Generalized Chinese Remainder Theorem in the Presence of Remainder Errors

机译:关于在存在下求解广义中国剩余定理的研究   剩余错误

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In estimating frequencies given that the signal waveforms are undersampledmultiple times, Xia et. al. proposed to use a generalized version of Chineseremainder Theorem (CRT), where the moduli are $M_1, M_2, \cdots, M_k$ which arenot necessarily pairwise coprime. If the errors of the corrupted remainders arewithin $\tau=\sds \max_{1\le i\le k} \min_{\stackrel{1\le j\le k}{j\neq i}}\frac{\gcd(M_i,M_j)}4$, their schemes can be used to construct an approximationof the solution to the generalized CRT with an error smaller than $\tau$.Accurately finding the quotients is a critical ingredient in their approach. Inthis paper, we shall start with a faithful historical account of thegeneralized CRT. We then present two treatments of the problem of solvinggeneralized CRT with erroneous remainders. The first treatment follows theroute of Wang and Xia to find the quotients, but with a simplified process. Thesecond treatment considers a simplified model of generalized CRT and takes adifferent approach by working on the corrupted remainders directly. Thisapproach also reveals some useful information about the remainders byinspecting extreme values of the erroneous remainders modulo $4\tau$. Both ofour treatments produce efficient algorithms with essentially optimalperformance. Finally, this paper constructs a counterexample to prove thesharpness of the error bound $\tau$.
机译:在估计频率的过程中,假设信号波形被多次欠采样,Xia等人。等建议使用汉语余数定理(CRT)的广义版本,其中模数为$ M_1,M_2,\ cdots,M_k $,不一定是成对的互质数。如果损坏的余数的错误在$ \ tau = \ sds \ max_ {1 \ le i \ le k} \ min _ {\ stackrel {1 \ le j \ le k} {j \ neq i}} \ frac {\ gcd(M_i,M_j)} 4 $,它们的方案可用于构建广义CRT解的近似值,其误差小于$ \ tau $。准确地找到商是其方法中的关键要素。在本文中,我们将从忠实的CRT的忠实历史记录开始。然后,我们提出两种解决带有错误余数的广义CRT问题的方法。第一种处理方法是按照Wang和Xia的方法来找到商,但过程很简单。第二种处理方法考虑了广义CRT的简化模型,并通过直接处理已损坏的余数采用了不同的方法。该方法还通过检查错误的余数的极值以模4 \ tau $为模,揭示了一些有关余数的有用信息。我们两种处理都产生了具有最佳性能的高效算法。最后,本文构建了一个反例来证明误差界限$ \ tau $的清晰度。

著录项

  • 作者

    Xu, Guangwu;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号